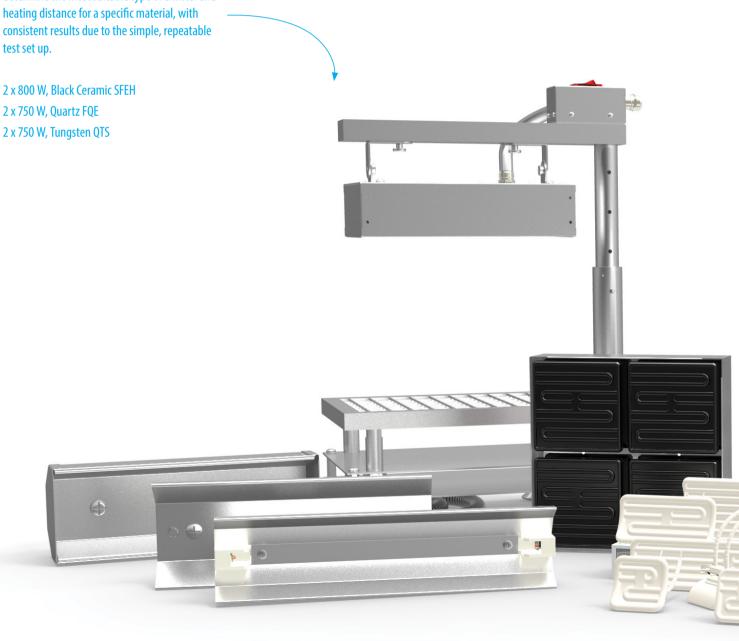


PORTABLE TEST STAND

Ceramicx' new Portable Test Stand allows for quick and consistent testing of materials. The interchangeable long, medium and short wave Infrared emitters are easily attached to the test stand.


The emitters face down and heat a material that is placed on a stainless steel mesh. The distance between emitter and material can easily be adjusted between 50mm and 200mm, in 50mm intervals.

This test stand allows the user to quickly determine the most suitable type of emitter and heating distance for a specific material, with consistent results due to the simple, repeatable test set up.

2 x 750 W, Tungsten QTS

Ceramicx Product Guide

CERAMIC ELEMENTS

- 02 | Ceramic trough elements
- 04 | Ceramic hollow elements
- 06 | Ceramic flat elements
- 08 | Ceramic Edison screw elements

OUARTZ ELEMENTS

- 10 Quartz elements
- 12 Pillared quartz elements
- 12 Single tube quartz heaters

PANEL HEATERS

13 | Panel heaters

OUARTZ TUNGSTEN/HALOGEN TUBES

- 14 Quartz tungsten tubes
- 15 | Quartz halogen tubes

REFLECTORS AND PROJECTORS

- 16 Reflectors RAS
- 17 | Quartz tungsten/halogen reflectors
- 17 | Projectors PAS

MODULAR IR HEATERS

18 | Modular IR 260 modular long wave infrared heater

FAST IR SYSTEMS

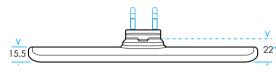
19 | Fast IR 305 / Fast IR 500

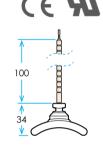
ACCESSORIES

- 20 Ceramic terminal blocks
- 20 | Ceramic beads

CERAMIC TROUGH ELEMENTS

Useful wavelength range 2 to 10 µm


(FTE/HTE/OTE) are industry standard curved ceramic infrared heaters used in a wide range of industrial, commercial and domestic applications. These solid cast elements consist of a high temperature FeCrAL resistance alloy embedded in a specially formulated ceramic body allowing operating temperatures up to 750°C and a maximum power of 1000W (FTE Model Only).


All dimensions mm Tolerances apply

۳ Full Trough Element,

Standard Wattages 150W 250W 300W 400W 500W 650W 750W 1000W. Standard Voltage 230V. Average weight 192g.

Wattage Mean surface temperature Max power density Radiant Watt density at 100mm

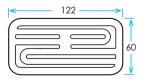
150W 250W 272 °C 351 °C 9 kW/m² 15 kW/m² 0.10 W/cm²

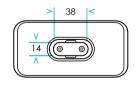
300W 400W 405 °C 18 kW/m² 0.26 W/cm²

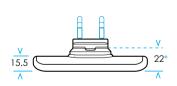
500W 515°C 480°C 24 kW/m² 30 kW/m² 0.48 W/cm²

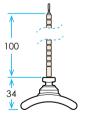
596°C 39 kW/m² 0.69 W/cm²

650W

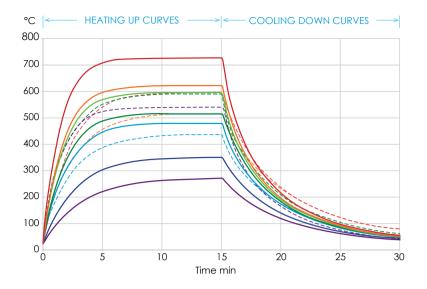

750W 624°C 45 kW/m² 1000W 726°C 60 kW/m² 1.14 W/cm²


(EB)


Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)


Half Trough Element,

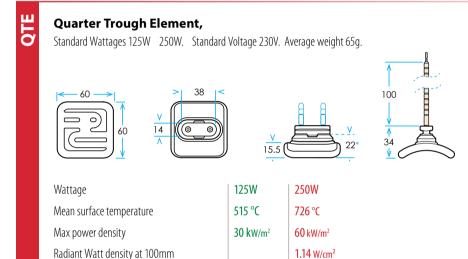
Standard Wattages 125W 150W 200W 250W 325W 400W 500W. Standard Voltage 230V. Average weight 105g.


Wattage Mean surface temperature Max power density Radiant Watt density at 100mm

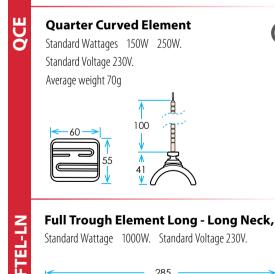
125W	150W
351 ℃	405 °C
15 kW/m²	18 kW/m ²
	0.26 W/cm

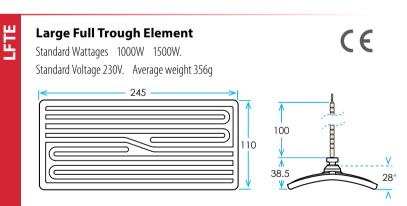
200W 480°C 24 kW/m² 250W 515 °C 30 kW/m² 325W 596°C 39 kW/m² 0.69 W/cm²

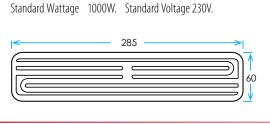
726 °C 60 kW/m² 1.14 W/cm²


500W

Heating up cooling down curves based on FTE tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9

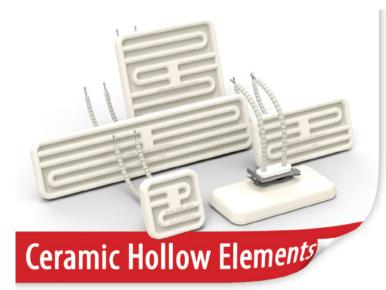

(element mounted in an aluminised steel reflector, RAS)


	FTE	HTE	QTE	
	1000W	500W	250W	1
_	750W			
—	650W	325W		
_	500W	250W	125W	ı
_	400W	200W		
_	250W	125W		
_	150W			



Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

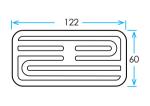
 ϵ

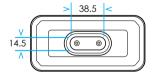


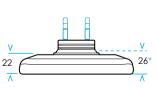
CE

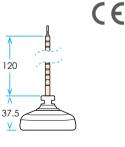
CERAMIC HOLLOW ELEMENTS

Useful wavelength range 2 to 10 µm

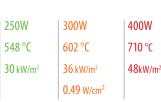

Ceramic Hollow Elements (SFEH, FFEH, HFEH, QFEH) are industry standard ceramic emitters used in a wide range of industrial, commercial and domestic applications. The hollow constructed ceramic element has the advantage of having a shorter heat up time combined with increased energy efficiency. These hollow constructed products consist of a high temperature FeCrAl resistance alloy embedded in a specially formulated light weight hollow cast ceramic body which is subsequently filled with a high density insulating material. This results in a significant reduction in rear heat loss and increased radiant output from the front of the element, the operating temperature is up to a maximum of 750°C and a maximum power of 800W (FFEH and SFEH)

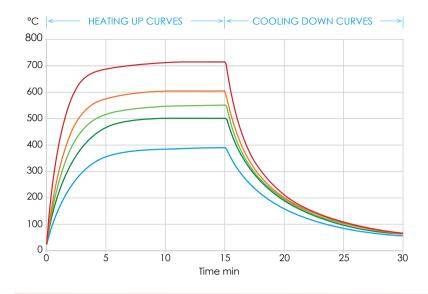

All dimensions mm Tolerances apply


HH Full Flat Element Hollow. CEStandard Wattages 250W 400W 500W 600W 800W. Standard Voltage 230V. Average weight 250g. 245 120 250W 400W 500W 600W 800W Wattage Mean surface temperature 497 °C 390°C 548°C 602 °C 710°C Max power density 15 kW/m² 24 kW/m² 30 kW/m² 36 kW/m² 48kW/m² Radiant Watt density at 100mm 0.25 W/cm² 0.44 W/cm² 0.73 W/cm² Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)


Half Flat Element Hollow,

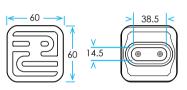
Standard Wattages 125W 200W 250W 300W 400W. Standard Voltage 230V. Average weight 117g.



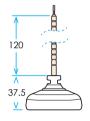


Wattage
Mean surface temperature
Max power density
Radiant Watt density at 100mm

Heating up cooling down curves based on FTE tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9


(element mounted in an aluminised steel reflector, RAS)

	FFEH	HFEH	QFEH	SFEH
_	800W	400W	200W	800W
_	600W	300W		600W
	500W	250W	125W	500W
	400W	200W		400W
	250W	125W		250W


OFEH

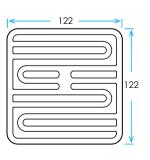
Quarter Flat Element Hollow,

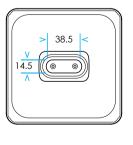
Standard Wattages 125W 200W. Standard Voltage 230V. Average weight 75g.

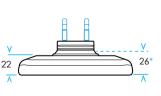
Wattage Mean surface temperature Max power density

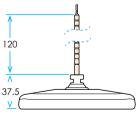
Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

SFEH


Square Flat Element Hollow,


Standard Wattages 250W 400W 500W 600W 800W. Standard Voltage 230V. Average weight 239g.

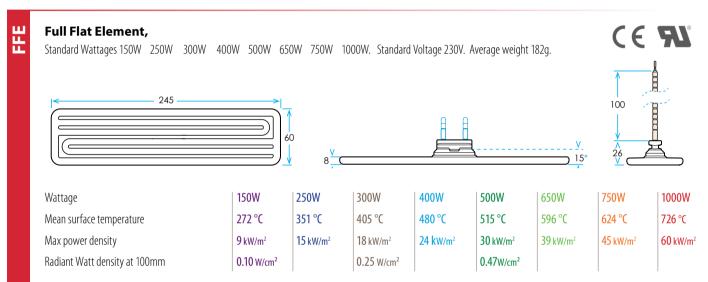



CE

CE

Wattage Mean surface temperature Max power density Radiant Watt density at 100mm 250W 400W 390°C 497 °C 15 kW/m² 24 kW/m² 0.28 W/cm² 0.51W/cm² 500W 548°C 30 kW/m²

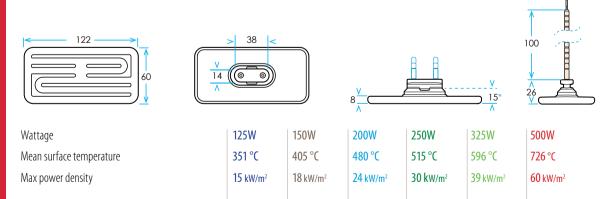
600W 800W 602°C 710 °C $36 \, kW/m^2$ 48kW/m² 0.81 W/cm² 1.18W/cm²

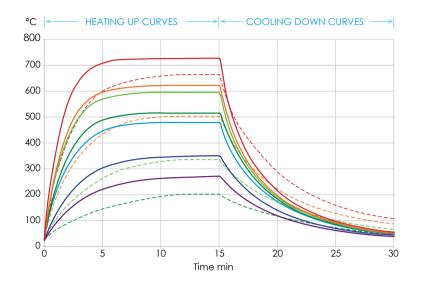

CERAMIC FLAT ELEMENTS

Useful wavelength range 2 to 10 µm

Ceramic IR Flat Elements (FFE/HFE/QFE) are industry standard ceramic emitters used in a wide range of industrial, commercial and domestic applications. These solid cast ceramic elements consist of a high temperature FeCrAl resistance alloy embedded in a specially formulated ceramic body allowing operating temperatures up to 750°C and a maximum power output of 1000W (FFE Model Only). The solid cast heater body is flat, producing a diffuse radiant output to target distance in some applications.

All dimensions mm Tolerances apply

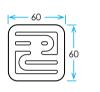

CE AL



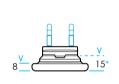
Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

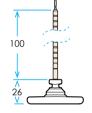
Half Flat Element,

Standard Wattages 125W 150W 200W 250W 325W 500W. Standard Voltage 230V. Average weight 105g.


Heating up cooling down curves based on FFE tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9

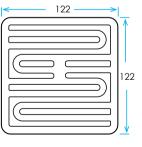
(element mounted in an aluminised steel reflector, RAS)

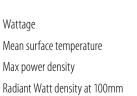

	FFE	HFE	QFE	SFSE	LFFE
_	1000W	500W	250W		1400W
_	750W			750W	750W
_	650W	325W		650W	350W
_	500W	250W	125W	500W	150W
_	400W	200W		400W	
_	250W	125W		250W	
_	150W			150W	

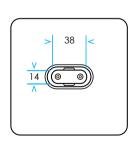


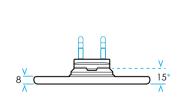
Standard Wattages 125W 250W. Standard Voltage 230V. Average weight 65g.

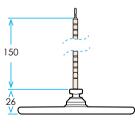
Wattage Mean surface temperature Max power density | 125W | 250W | 515 °C | 726 °C | 30 kW/m² | 60 kW/m²


Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)


Square Flat Solid Element,

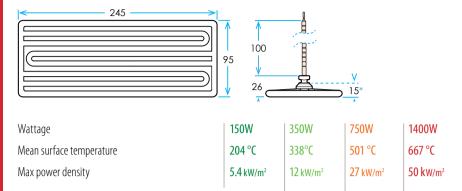

Standard Wattages 250W 400W 500W 600W 800W. Standard Voltage 230V. Average weight 192g.


 ϵ



150W	250W
272 °C	351 ℃
$9kW/m^2$	15 kW/m ²
	0.23 W/cm ²

300W	400W	500W
405 °C	480 °C	515 °C
18 kW/m ²	24 kW/m ²	30 kW/m ²
	0.39 W/cm ²	



650W	750W
596 °C	624 °C
39 kW/m ²	45 kW/m ²
0.71 W/cm ²	0.81 W/cm ²

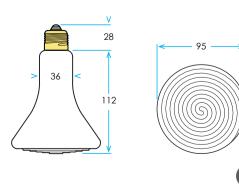
Large Full Fat Element,

Standard Wattages 150W 350W 750W 1400W. Standard Voltage 230V. Average weight 342g.

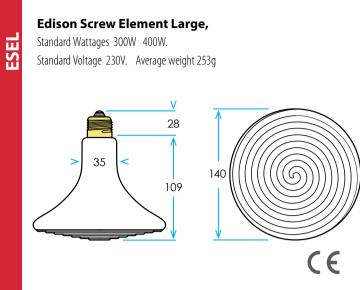
Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

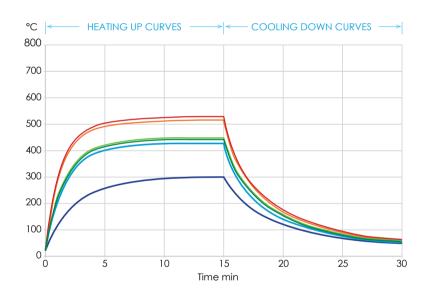
CERAMIC EDISON SCREW ELEMENTS

Useful wavelength range 2 to 10 µm


Ceramic Edison Screw Elements (ESEB, ESES, ESER, ESEXL) are industry standard infrared bulbs used primarily in the area of reptile/animal/ pet health care. These ceramic bulbs provide the infrared heat required without any of the negative effects of a light output that can disturb the day/night sleeping cycle of the reptile/animal. Ceramicx hollow cast bulbs consist of a high temperature FeCrAl resistance alloy embedded in a specially formulated ceramic body allowing operating temperature up to 530°C and a maximum power of 400W (ESEXL Model Only). The face of the ESEB is circular and convex in design, producing a circular outward trending radiant output.

All dimensions mm Tolerances apply


ESES Edison Screw Element Small, ESER Standard Wattages 60W 100W. Standard Voltage 230V. Average weight 113g 28 36 CE AN


Edison Screw Element Regular,

Standard Wattages 150W 250W. Standard Voltage 230V. Average weight 165g

Heating up cooling down curves based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 (element mounted in an aluminised steel reflector, RAS)

	ESES	ESER	ESEB	ESEXL
_				400W
_		250W		
				300W
_		150W		
_	100W		100W	
	60W		60W	

Wattage
Mean surface temperature
Max power density

ESES		ESER	ESEB		ESEXL		
60W	100W	150W	250W	60W	100W	300W	400W
300°C	426°C	441°C	516°C	300°C	426 °C	450°C	530 °C
7.3kW/m ²	12 kW/m ²	15kW/m²	25 kW/m ²	13.5kW/m ²	22.5 kW/m ²	22.5kW/m ²	30 kW/m ²

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 $\,$

Quartz Elements

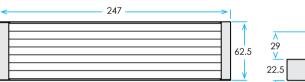
QUARTZ ELEMENTS

Useful wavelength range 1.5 to 8µm

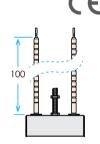
Quartz infrared heating elements provide medium wave infrared radiation. They are favoured in industrial applications where a more rapid heater response is necessary, including systems with long heater off cycles.

Quartz infrared heating elements are particularly effective in systems where rapid heater response and/or zone controlled heating is required.

They have a broad emission spectrum from around 1.4 to 8 microns, slightly shorter in wavelength than ceramic elements.


Pillared guartz elements have the same mounting fixture as ceramic elements allowing easy replacement.

All dimensions mm Tolerances apply


9 0 1

Full Quartz Element,

Standard Wattages 150W 250W 300W 400W 500W 650W 750W 1000W. Standard Voltage 230V. Average weight 403g.

Wattage Mean surface temperature Max power density Radiant Watt density at 100mm

150W 343 °C 9 kW/m² 0.10 W/cm² 250W 300W 438 °C 477 °C 18 kW/m² 15 kW/m² 0.26 W/cm²

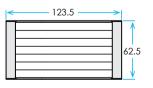
400W 542 °C 24 kW/m² 0.48 W/cm²

500W 650W 593 °C 664°C 30 kW/m² 39 kW/m²

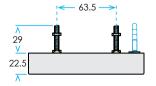
0.69 W/cm²

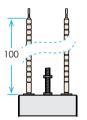
750W 690°C 45 kW/m²

1000W 772 ℃ 60 kW/m²


1.14 W/cm²

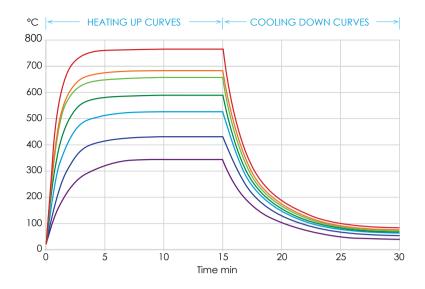
CE


Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)


Half Quartz Element,

Standard Wattages 150W 250W 325W 400W 500W. Standard Voltage 230V. Average weight 210g.

0	0 🚳
©	0
0	○ 🚱


Wattage Mean surface temperature Max power density Radiant Watt density at 100mm

150W 250W 477 °C 593 °C 18 kW/m² 30 kW/m² 0.26 W/cm²

325W 664°C 39 kW/m² 0.69 W/cm² 400W 709°C 48 kW/m²

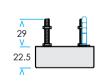
772°C 60 kW/m² 1.14 W/cm²

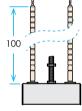
500W

Heating up cooling down curves based on FQE tests of average surface temperature with an infrared thermometer set at an emissivity of $0.7\,$

(element mounted in an aluminised steel reflector, RAS)

	FQE	HQE	QQE	SQE
—	1000W	500W	250W	1000W
_	750W			750W
_	650W	325W		650W
_	500W	250W		500W
_	400W			400W
_	250W			250W
_	150W			150W
	PFQE	PHQE		


QQE

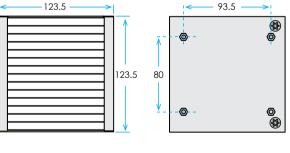

Quarter Quartz Element,

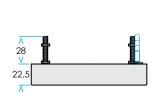
Standard Wattages 150W 250W. Standard Voltage 230V. Average weight 144g.

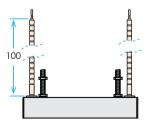
Wattage
Mean surface temperature
Max power density
Radiant Watt density at 100mm

150W 642 °C 36 kW/m² 250W 772 °C 60 kW/m² 1.14 W/cm²

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)


OE OE

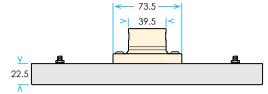

Square Quartz Element,

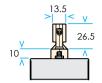

Standard Wattages 150W 250W 300W 400W 500W 650W 750W 1000W. Standard Voltage 230V. Average weight 401g.

CE

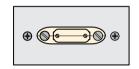
Wattage Mean surface temperature Max power density

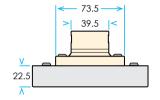
150W 343 °C 9 kW/m²


250W 438 °C 15 kW/m² 300W 477 °C 18 kW/m² 400W 542 °C 24 kW/m² 500W 593 °C 30 kW/m² 650W 664 °C 39 kW/m² 750W 690 °C 45 kW/m² 1000W 772 °C 60 kW/m²

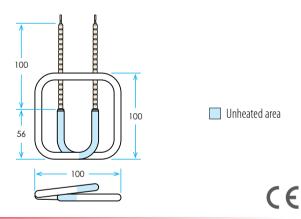

Pillared Full Quartz Element,

Standard Wattages 150W 250W 400W 500W 650W 750W 1000W. Standard Voltage 230V. Average Weight 403g



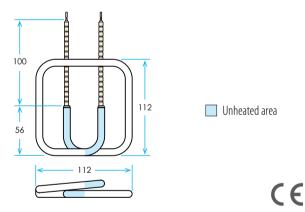

Pillared Half Quartz Element,

Standard Wattages 150W 250W 400W 500W. Standard Voltage 230V. Average Weight 268g

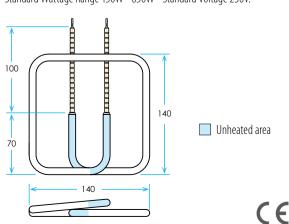


STQH 100

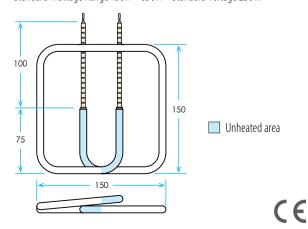
Single Tube Quartz Heater 100,

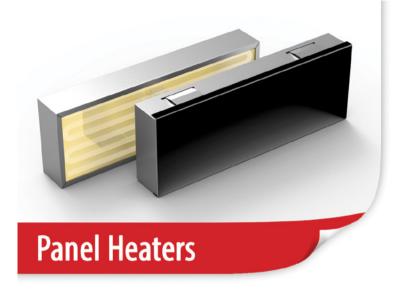

Standard Wattage Range 150W - 400W Standard Voltage 230V.

Single Tube Quartz Heater 112,


Standard Wattage Range 150W - 400W Standard Voltage 230V.

STQH 140


Single Tube Quartz Heater 140,


Standard Wattage Range 150W - 650W Standard Voltage 230V.

Single Tube Quartz Heater 150,

Standard Wattage Range 150W - 650W Standard Voltage 230V.

PANEL HEATERS

Useful wavelength range 4 to 6µm

They are a neat, easily mounted and readily expanded heating solution. Infrared panel heaters are custom built infrared heaters operating primarily in the long wave range. The basic construction consists of a resistance coil embedded into a ceramic fibre board which is then located behind an emitting surface of either anodised aluminium or glass ceramic. This is then placed inside a 75mm high aluminised steel housing which normally contains 50mm of thermal insulation to reduce heat loss through the rear of the unit.

All dimensions mm Tolerances apply

STANDARD OPTIONS

(Other options available on request. Please contact us for further details.)

Emitting surface

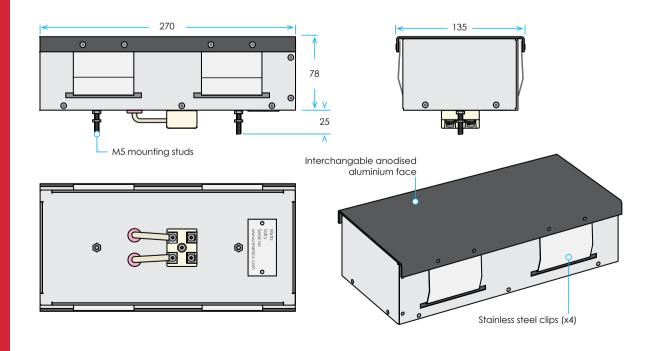
Anodised aluminium face - Good radiant efficiency, very robust, surface sheet can be easily cleaned or

replaced if damaged by molten material.

Glass ceramic face - Very good radiant efficiency, high percentage transmission of radiant output in medium to

short wave range, surface can be easily cleaned.

Electrical terminations Open 2P terminal block, Terminal block with cover, M6 or 1/4" threaded stud, Type K thermocouple with fixed high


temperature socket and removable plug

Fixing studs

M5/M6/M8/0.25" x 25mm long

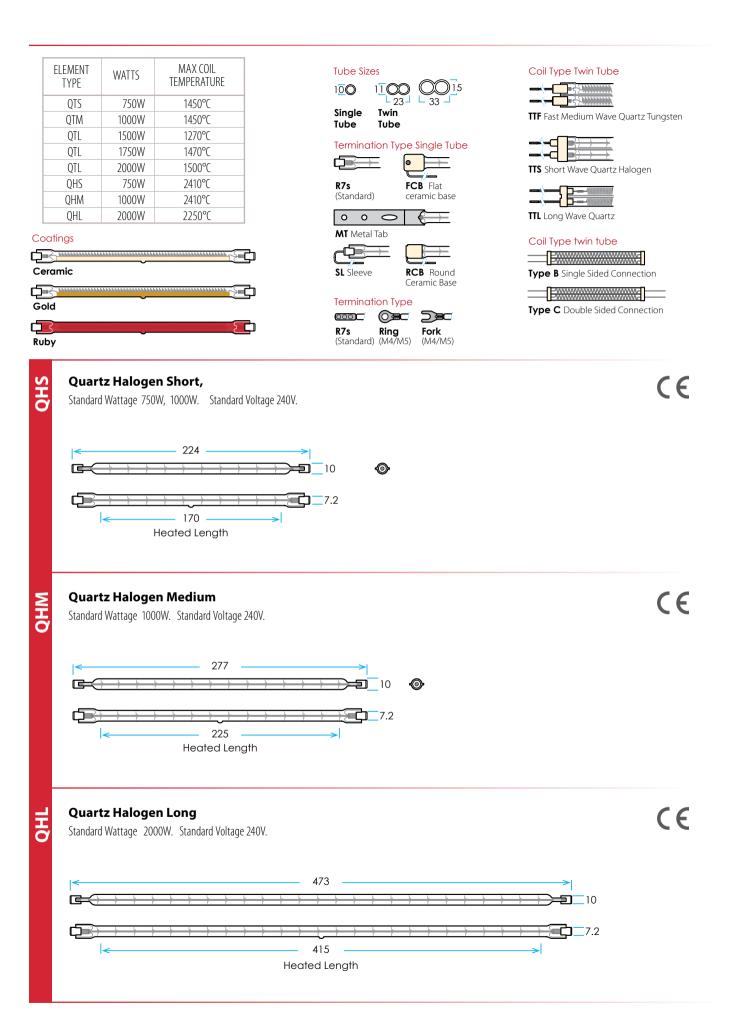
Sample panel heater,

Black anodised aluminium face, 270 x 135mm, 500W, 230V, with open 2P terminal block connection.

Quartz Tungsten/Halogen

QUARTZ TUNGSTEN/ QUARTZ HALOGEN TUBES

The tungsten filament used in these quartz tungsten heaters is the porcupine or star type coil, which can be operated at temperatures up to 1500°C (2732°F), with a peak wavelength emission of approximately 1.6 microns. It reaches top temperatures within seconds.


Halogen heaters are filled with a halogen gas to allow the supported tungsten filament to reach temperatures as high as 2600°C (4712°F).

Peak emissions for these tubes is around 1 micron.

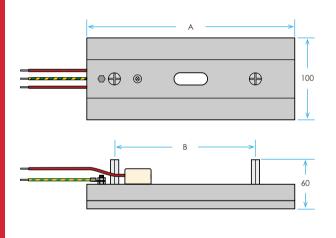
These emitters heat up and cool down within seconds making them particularly suitable for systems requiring short cycle times.

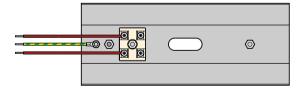
All dimensions mm Tolerances apply

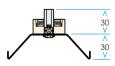
REFLECTORS AND PROJECTORS

Highly reflective aluminised steel projectors and reflectors

At Ceramicx, our reflectors are designed to cater for a wide range of ceramic and quartz infrared emitters. Units can be mounted individually or side-by-side forming infrared heat panels.


Our projectors are designed to cater to a wide range of ceramic elements and are the ideal solution where positional heat is required economically, efficiently and quickly.


All dimensions mm Tolerances apply


RAS

Reflector Aluminised Steel

Reflector material 0.75mm polished aluminised steel. Mounting studs with M6 internal thread. 300mm high temperature leads.

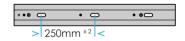
RAS 1 shown as example

RAS 0.5 Suitable for HTE, HFEH and HFE elements.

Overall length A = 160 mm Distance between fittings B = 131 mm

RAS 1 Suitable for FTE, FFEH and FFE elements.

Overall length A = 254 mm Distance between fittings B = 175 mm


RAS 2 Suitable for FTE, FFEH and FFE elements.

Overall length A = 505 mm Distance between fittings B = 278 mm

RAS 3 Suitable for FTE, FFEH and FFE elements.

Overall length A = 754 mm Distance between fittings B = 528 mm

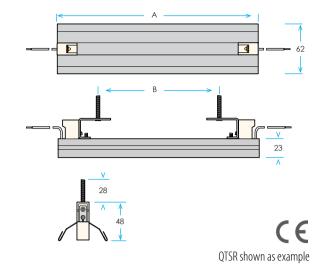
RAS 4 Suitable for FTE, FFEH and FFE elements.

Overall length A = 1,004mm Distance between fittings B = 778 mm

RAS 5 Suitable for FTE, FFEH and FFE elements.

Overall length $A = 1,254 \, \text{mm}$ Distance between fittings $B = 1,028 \, \text{mm}$

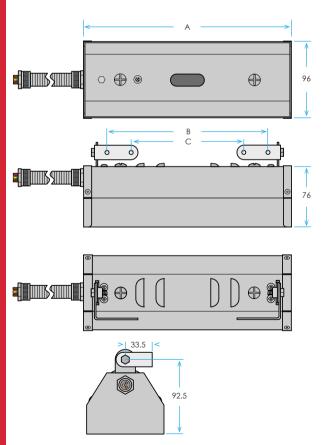
Quartz Tungsten / Halogen Reflectors


Reflector manufactured from 0.75 mm polished aluminised steel. 2 x M5 fixing bolts

R7s holders with 200mm leads Ø 0.75mm with PTFE-insulation

QTSR Quartz Tungsten Halogen Short Reflector Suitable for QTS/QHS tubes with R7s terminations Overall length A = 250mm Distance between fittings B = 153mm

QTMR Quartz Tungsten Halogen Medium Reflector Suitable for QTM/QTM tubes with R7s terminations Overall length A = 300mm Distance between fittings B = 203mm

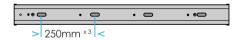

QTLR Quartz Tungsten Halogen Long Reflector Suitable for QTL/QHL tubes with R7s terminations Overall length A = 497mm Distance between fittings B = 400mm

PAS

Projector Aluminised Steel

Reflector material 0.75mm polished aluminised steel. Ø16 mm metal conduit, length 1.5m

CE PAS 1 shown as example **PAS 1** Suitable for FTE, FFEH and FFE elements. Overall length A = 258 mm B = 200 mm C = 140 mm


PAS 2 Suitable for FTE, FFEH and FFE elements. Overall length A = 508 mm B = 450 mm C = 390 mm

PAS 3 Suitable for FTE, FFEH and FFE elements. Overall length A = 758 mm B = 700 mm C = 640 mm

PAS 4 Suitable for FTE, FFEH and FFE elements. Overall length A = 1,008 mm B = 950 mm C = 890 mm

PAS 5 Suitable for FTE, FFEH and FFE elements. Overall length A = 1,258 mm B = 1,200 mm C = 1,140 mm

Modular IR Units

62 262 262

Modular IR 260 - Modular long wave infrared heater allowing multiple units to be arrayed with equal element spacing

Dual voltage 480/240 V (elements can be connected in series or parallel)

Two power output options -2.4 kW and 1.6 kW

Robust high temperature resistant construction

Fitted with high efficiency black ceramic hollow emitter model SFEH (x 4)

Stainless steel housing

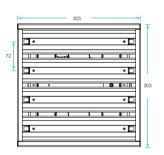
High reflectivity polished aluminised steel reflector plate

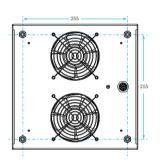
Fixed using 4 stainless steel stand off's with M6 threaded screw and fixing nut

Optional type K thermocouple in one of the ceramic emitters

Thermocouple (if installed) connected using removable ceramic type K plug (supplied)

The Modular IR 260 units are designed to maintain equal element spacing when mounted in an array

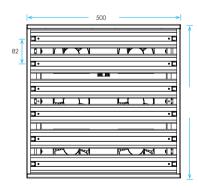


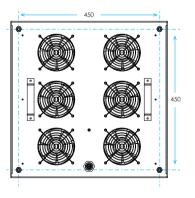

FASTIR

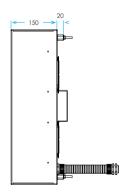
These compact robust systems form an ideal installation for quartz heating elements - quartz tungsten/halogen glass tube emitters. Optimum efficiency is achieved by highly polished aluminium steel reflection and rear mounted axial flow fans, which eliminate rear convection losses and keep the reflectors cool for better directional quality on the infrared output. The external body which is manufactured from aluminium can be maintained at "touch safe" temperature.

All dimensions mm Tolerances apply

FASTIR 305 Suitable for 1000W Quartz tungsten/Halogen heaters QTM or QHM. Standard FastIR 305 designed to hold 4 tubes (4kW), also available as 5 tube (5kW).






4 x Aluminium stand off with M6 threaded screw with fixing nut.

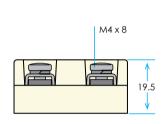
Electrical termination made via 1.5m of 20mm diameter flexible metal conduit with additional 0.5m of glass fibre insulated NPC conductors. 2 rear mounted axial flow fans. Suitable for heater type QTM (Quartz Tungsten Medium) or QHM (Quartz Halogen Medium) tubes with R7s termination, 240V (1000W maximum) See pages 52/53 for full details of tubes

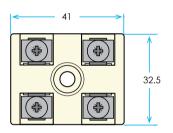
FASTIR 500 Suitable for 1500W, 1750W, 2000W Quartz Tungsten heaters QTL or 2000W Quartz Halogen heaters QHL. Standard FastIR 500 designed to hold 6 tubes (12kW) also available as 7 tube (14kW).

4 x Aluminium stand off with M6 threaded screw with fixing nut.

Electrical termination made via 1.5m of 25mm diameter flexible metal conduit with additional 0.5m of glass fibre insulated NPC conductors. 6 rear mounted axial flow fans. Suitable for heater types QTL (Quartz Tungsten Long) or QHL (Quartz Halogen Long) tubes with R7s termination, 240V (2000W maximum). CE See pages 52/53 for full details of tubes. Please note other configurations are available on request.

ACCESSORIES


Ceramicx manufactures a range of accessories, including steatite press components.


Steatite ceramic dust has proven itself to be the material-ofchoice for the manufacture of electrical insulators thanks to its good mechanical strength, ideal dielectric properties and high temperature resistivity of up to 1000°C

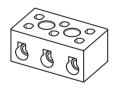
All dimensions mm Tolerances apply

2P Ceramic terminal block Stainless steel fittings, body Steatite C-221

Maximum voltage:	500 V
Maximum temperature:	450 °C
Maximum current:	20 A*
Maximum cable CSA (solid):	4.0 mm sq.
Maximum cable CSA (stranded/with ferrule)	2.5 mm sq.

^{*}Up to 30A permissible at lower temperatures.

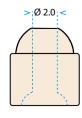
2P Mini Ceramic terminal block

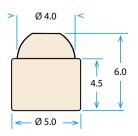

Nickel galvanised brass inserts. Zinc plated steel screws. 21 x 18 x 15 mm

TB2 Ceramic terminal block

Plated brass inserts. Nickel galvanised screws. 34 x 30 x 22 mm

TB3 Ceramic terminal block


Plated brass inserts. Nickel galvanised screws. 51 x 30 x 22 mm

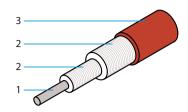

2P Ceramic terminal block no fittings

41 x 32.5 x 9.5 mm

Ceramic beads 1 Kg bag

Material: Steatite C-221

Ceramic tubes



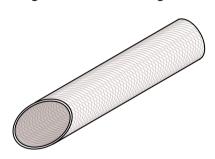
Ø5 x 11.5 mm Material: Steatite C-221

CERAMIC BEADS

CABLE SLEEVING

High temperature NPC cable

- 1. Flexible nickel plated copper core
- 2. Multiple silicone-impregnated glass lapping
- 3. Silicone coated fibreglass braid


Continuous working temperature: Peaks at 350°C

Working voltage: 300/500V

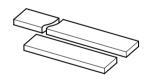
Nominal core cross –section	Nominal core stranding	Outer cable diameter	Linear weight approx
0.75 mm ²	11 x 0.30	2.4 mm	11.9 kg/km
1.50 mm ²	21 x 0.30	2.8 mm	20.5 kg/km
2.50 mm ²	35 x 0.30	3.2 mm	32.2 kg/km
4.00 mm ²	56 x 0.30	4.0 mm	50.1 kg/km

-60°C to +280°C

Fibre glass braided sleeving

Fibre glass braided sleeving non-impregnated Continuous working temperature: -60°C to +450°C

	N ®
7	u


Nominal Inner diameter	Min. wall thickness	Linear weight approx
2 mm	0.20	3.10 kg/km
4 mm	0.30	7.60 kg/km
6 mm	0.30	12.00 kg/km

Grommet set

Ceramic grommet and star-lock fastener set, used as insulator in sheet metal with 6mm hole 9.5 x 7.5 mm

Stainless steel buss bar

Used with the ceramic terminal block to produce a flexible power distribution system 8 x 2 x 1000 mm

Steel wave and spring clip

Used in the mounting and instillation of all Ceramic and pillared quartz elements

R7s ceramic holder

For standard quartz tungsten tubes and quartz halogen tubes

